
Faster SMT Solving via 
Constraint Transformation

Benjamin Mikek, Qirun Zhang
Georgia Institute of Technology

14 October 2023



Background: SMT Constraints

• SMT constraints encode first-order logic problems
• SMTLIB: a standard language for expressing constraints
•Many solvers: Z3, CVC5, etc.
• Bitvector constraints represent program logic
• Benchmark example: does multiplication overflow?

SAT: There is a variable assignment such 
that every assertion evaluates to true
UNSAT: There is not variable assignment 
such that every assertion evaluates to true

Theories: Bitvectors (machine integers), 
floating-point numbers, integers (linear 
and nonlinear), real numbers (linear and 
nonlinear)



Background: SMT Constraints
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_BV/-/blob/master/challenge/multiplyOverflow.smt2

https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_NIA/-/blob/master/AProVE/aproveSMT1002369120799378097.smt2

Bitvectors: Can multiplication a * b 
overflow, subject to a division constraint?

Unbounded integers: Does an 
underlying program terminate?

https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_BV/-/blob/master/challenge/multiplyOverflow.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_NIA/-/blob/master/AProVE/aproveSMT1002369120799378097.smt2


Example: Can multiplication overflow?

https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_BV/-/blob/master/challenge/multiplyOverflow.smt2

https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_BV/-/blob/master/challenge/multiplyOverflow.smt2


Example: Can multiplication overflow?

https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_BV/-/blob/master/challenge/multiplyOverflow.smt2

0 0 1 0 1 1 0 0

1 0 1 1 0 1 0 0

× =

a b

0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 0

0 0 1 0 = 0 0 0 0
?

https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_BV/-/blob/master/challenge/multiplyOverflow.smt2


Example: Can multiplication overflow?

https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_BV/-/blob/master/challenge/multiplyOverflow.smt2

0 0 1 0 1 1 0 0

1 0 1 1 0 1 0 0

× =

a b

0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 0

0 0 1 0 = 0 0 0 0
?

/ a ≥ b
?

MAX

https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_BV/-/blob/master/challenge/multiplyOverflow.smt2


Example: Can multiplication overflow?

https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_BV/-/blob/master/challenge/multiplyOverflow.smt2

The constraint is UNSAT

But Z3 takes ~5 minutes to solve it L

https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_BV/-/blob/master/challenge/multiplyOverflow.smt2


How can we speed up solving?

•Make a new solver – labor intensive, requires existing 
domain knowledge
• Extend an existing solver – requires detailed domain 

knowledge
• Key idea: Simplify constrains before applying a solver
• Two realizations:
• Simplify bounded constraints using compiler optimization
• Simplify unbounded constraints by making them bounded



Approach the First: 
SLOTting into Success



Simplifying bounded constraints with 
compiler optimization

• Compilers already implement many complex optimization 
passes
• Idea kernel: apply compiler optimizations to SMT problems
• Converting optimization passes into the SMT world would be 

complex
• Instead, we translate constraints to a compiler IR
• Implemented with LLVM: SMT-LLVM Optimizing Translation 

(SLOT) [FSE 2023]



SMTLIB and LLVM

Two SMT theories represent machine arithmetic: bitvectors 
(“integers”) and floating-point numbers

SMTLIB LLVM
Bitvector types One for each integer width n One for each width up to 223

Floating point types One for each integer pair eb, 
sb, but almost all in powers of 2

16-bit, 32-bit, 64-bit, 128-bit

Logic operations and, or, xor, not, ite,=>, … and, or, xor, select, …

Bitvector math operations bvadd, bvsub, bvmul, bvsdiv, 
bvudiv, …

add, sub, mul, sdiv, udiv

Floating point math operations fp.add, fp.sub, fp.div, fp.fma, … fadd, fsub, fdiv, llvm.fma, …

Conversions to_fp, to_fp_unsigned, 
fp.to_sbv, …

sitofp, uitofp, fptosi, …



SMT Constraint LLVM IR Simple LLVM IR’ Simple SMT 
Constraint

SL
OT

 Fr
on

te
nd

LL
VM

 O
pt

im
ize

r –
 Fr

ee
!

SL
OT

 B
ac

ke
nd

SAT/UNSAT SAT/UNSAT=
Solver – Slow Solver –

 Fast!



SLOT: Key Challenges

• SLOT has two parts: a front end and back end. Both have 
to preserve semantics
• LLVM is missing some SMT operations
• SMTLIB is missing some LLVM operations
• SMT constraints are declarative; LLVM is imperative
•Within assertions, order is dictated. But assertions are 

unordered



SLOT Translation

• Frontend: traverse the syntax tree of each SMT assertion
• Build an LLVM expression with the same semantics
•Most operations have 1-to-1 equivalents
• bvmul -> mul, bvadd -> add, fp.add -> fadd
• Some expressions are more complex and may involve 

undefined behavior handling



SLOT by Example: Checking for Overflow



Applying SLOT’s frontend

The LLVM function 
returns true if the 
inputs satisfy the 
underlying constraint.



Applying LLVM’s optimizer



Applying SLOT’s backend

Can be solved almost instantly (0.02 seconds)!



SMT Constraint LLVM IR Simple LLVM IR’ Simple SMT 
Constraint

SL
OT

 Fr
on

te
nd

LL
VM

 O
pt

im
ize

r –
 Fr

ee
!

SL
OT

 B
ac

ke
nd

SAT/UNSAT SAT/UNSAT=
Solver – Slow Solver –

 Fast!

>5 min 0.02 sec



SLOT Results

• SLOT increases the number of solvable constraints at 
600 second timeout by 10-20%
• SLOT can solve formulas for which three different 

solvers all fail (Z3, CVC5, Boolector)
• SLOT speeds up average solving time of large 

constraints by up to 3x
• SLOT and existing solvers act as a sieve



SLOT Results



SLOT Results
• The most effective optimizations passes are reassociate, 

instcombine, and global value numbering
• Solver developers can learn from these results about new 

optimizations to include in solvers

How many benchmarks does each pass change? Which passes contribute the most speedup?



Approach the Second: From 
Unbounded to Bounded



Unbounded SMT Theories

• Unbounded theories are hard to solve
• Nonlinear integer arithmetic is undecidable
• Linear integer arithmetic and real arithmetic have no 

practical bounds on solutions
• In general, solvers perform better on bounded theories
• Idea kernel: transform unbounded constraints into 

equivalent bounded ones



Imposing Bounds

•Whenever we transform an unbounded variable into a 
bounded one, we loose information
• The transformation involves choosing sizes for the 

bounded variables (i.e., integer and floating-point 
widths)
• One option is to choose a constant size. But bigger 

widths slow down solving
• Therefore, we use abstract interpretation to estimate 

widths



Example: Imposing Bounds

• Choose a fixed width: 4 bits
•Maximum value for a variable is 15
• Line 3 is SAT
• Line 4 is UNSAT!

Satisfying assignment:
a = 15
b = 16



Example: Imposing Bounds
Use abstract interpretation. Maximum constant is 4 bits (15).

a b

<

0-



Example: Imposing Bounds
Use abstract interpretation. Maximum constant is 4 bits (15).

a b

<

0-
1

1: Constants are assigned their width



Example: Imposing Bounds
Use abstract interpretation. Maximum constant is 4 bits (15).

a b

<

0-

4 4

1

2: Variables are given the maximum constant width



Example: Imposing Bounds
Use abstract interpretation. Maximum constant is 4 bits (15).

a b

<

0-

4 4

5 1

3: Subtraction: max(left, right) + 1



Example: Imposing Bounds
Use abstract interpretation. Maximum constant is 4 bits (15).

a b

<

0-

4 4

5

5

1

4: Comparison: max(left, right)



Example: Imposing Bounds
Use abstract interpretation. Maximum constant is 4 bits (15).

a b

<

0-

4 4

5

5

1

Satisfying assignment:
a = 15
b = 16



Choosing Bounds
• Even abstract interpretation cannot choose large enough 

bounds for all constraints
• If the final constraint is SAT, we are done
• If the final constraint is UNSAT, we must revert to the 

original

Unbounded SMT 
Constraint

Bounded SMT 
Constraint

Result

SAT

UNSAT



Unbounded theories: Results

• Z3 can perform 5x or more slower on unbounded 
constraints than similar bounded ones
• Speedups of 2.06x for NIA on satisfiable cases
• Speedups of 1.2x for NIA on average



Conclusion

• Transforming SMT constraints before applying a solver 
reduces workload and can still simplify constraints
• SLOT harnesses LLVM optimization to simplify 

constraints and speed up solving
•We transform unbounded constraints into bounded ones 

to improve performance
• Any questions?


